Susan Shortreed, PhD

“By using rich data sources such as electronic health records, we can begin to identify which treatments will work best for which people.”

Susan Shortreed, PhD

Group Health Research Institute Associate Investigator

Biography

Susan Shortreed's research brings together statistics and machine learning methods to address health science problems, with a special emphasis on analyzing complex longitudinal data and overcoming missing-data challenges. Much of her methodological work is focused on developing and evaluating statistical inference approaches for observational data, such as data from electronic health care records or from randomized clinical trials with missing information. Dr. Shortreed is also interested in developing new machine learning methods and extending current best-practice methods, specifically for personalized dynamic treatment strategies, clustering, and model selection methods.

Dr. Shortreed earned her PhD in statistics from the University of Washington in 2006. After completing her degree, she spent two years in the Department of Epidemiology and Preventive Medicine at Monash University in Melbourne, Australia, and two years in the School of Computer Science at McGill University. Dr. Shortreed has collaborated with scientists in a broad range of areas including cancer screening, cardiovascular disease, and medication and vaccine safety. Currently, she works most often with researchers in mental and behavioral health, evaluating and comparing treatments for chronic pain, depression, and bipolar disorder, and interventions to prevent alcohol misuse, smoking, and suicide. Dr. Shortreed is an investigator with the Mental Health Research Network, designing studies to address important public health concerns, such as determining which antidepressant medications work best for which patients.

In addition to her GHRI work, Dr. Shortreed is an affiliate associate professor at the University of Washington Biostatistics Department. She serves on the Executive Board for the American Statistical Association’s Section on Statistics in Epidemiology.

Research interests and experience

  • Biostatistics

    Analysis of complex longitudinal data and data collected from electronic health records; methods for overcoming missing data; computational statistics and algorithms; variable selection methods

  • Medication Use & Patient Safety

    Biostatistics; data mining

  • Mental Health

    Biostatistics; treatment for chronic depression and bipolar disorder; suicide prevention; developing personalized dynamic treatment strategies

Recent publications

Simon GE, Coleman KC, Rossom R, Beck A, Oliver M, Johnson E, Whiteside U, Operskalski B, Penfold RB, Shortreed SM, Rutter C. Risk of suicide attempt and suicide death following completion of the patient health questionnaire depression module in community practice. J Clin Psychiatry.dx.doi.org/10.4088/JCP.15M09776.

Ertefaie A, Shortreed S, Chakraborty B. Q-learning residual analysis: application to the effectiveness of sequences of antipsychotic medications for patients with schizophrenia. Stat Med. 2016 Jan 10. doi: 10.1002/sim.6859. [Epub ahead of print]. PubMed

Shortreed SM, Laber E, Pineau J, Murphy SA. Imputing missing data from sequential multiple assignment randomized trials. In: Moodie EEM, Kosorok MR, editors. Adaptive Treatment Strategies in Practice: Planning Trials and Analyzing Data for Personalized Medicine. Philadelphia: SIAM; 2015. p.178-230.

Von Korff M, Turner JA, Shortreed SM, Saunders KW, Rosenberg D, Thielke S, LeResche LA. Timeliness of care planning upon initiation of chronic opioid therapy for chronic pain. Pain Med. 2015 Dec 14. pii: pnv054. [Epub ahead of print].

 

healthy findings blog

Can precision medicine break the chain of mental health co-misery?

Mental health research excels at linking bad experiences to poor outcomes, writes Dr. Greg Simon. Here’s how to focus on recovery and resilience instead.

Read about it in Healthy Findings.